88 research outputs found

    A Tunnel-aware Language for Network Packet Filtering

    Get PDF
    Abstract—While in computer networks the number of possible protocol encapsulations is growing day after day, network administrators face ever increasing difficulties in selecting accurately the traffic they need to inspect. This is mainly caused by the limited number of encapsulations supported by currently available tools and the difficulty to exactly specify which packets have to be analyzed, especially in presence of tunneled traffic. This paper presents a novel packet processing language that, besides Boolean filtering predicates, introduces special constructs for handling the more complex situations of tunneled and stacked encapsulations, giving the user a finer control over the semantics of a filtering expression. Even though this language is principally focused on packet filters, it is designed to support other advanced packet processing mechanisms such as traffic classification and field extraction. I

    Integration of innovative oxide materials in an IT-SOFC

    Get PDF
    Cette thèse vise à évaluer le potentiel d'un nouveau couple cathode / électrolyte pour une application en IT-SOFC (700C), par le biais de l élaboration et du test de cellules à anode support de configuration planaire. Les matériaux concernés sont l'électrolyte BaIn0.3Ti0.7O2.85 (BIT07), de structure perovskite, et les nickelates de terres rares Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) en tant que cathodes ; ces matériaux ont montré des propriétés prometteuses dans des travaux préliminaires effectués à l'IMN et l'ICMCB. La première partie de cette thèse porte sur la mise en place d'un protocole d'élaboration de cellules complètes utilisant des techniques bas coûts et industrialisables (cellules de taille 3 x 3 cm2) : l anode Ni / BIT07 a été élaborée par coulage en bande, l'électrolyte BIT07 par vacuum slip casting et les cathodes par sérigraphie. Les mesures électrochimiques réalisées sur une première génération de cellules ont mis en évidence la nécessité d'ajouter une couche barrière de GDC entre les cathodes LnN et l'électrolyte BIT07. Les meilleures performances ont été obtenues pour une cellule BIT07 / Ni | BIT07 | GDC | PrN, avec une densité de puissance à 700C et 0.7 V de 176 mW cm-2 pour une faible résistance de polarisation de 0. 29 cm2. La principale limitation des performances a été identifiée comme étant la résistance interne du banc de test, donnant lieu à des valeurs de résistances séries anormalement élevées. Cette cellule a été opérée avec succès durant plus de 500 heures sous courant, avec néanmoins une vitesse de dégradation extrapolée élevée de l ordre de 27% / kh.This thesis aimed at assessing the potential of a novel cathode / electrolyte couple for IT-SOFC applications (700C), through the elaboration and testing of planar anode-supported cells. The materials involved were the perovskite-structured BaIn0.3Ti0.7O2.85 (BIT07) electrolyte and the rare earth nickelate Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) cathodes, both materials having shown promising properties in preliminary work done at the IMN and the ICMCB. The first part of this thesis concerned the implementation of a cell elaboration protocol using low-cost and scalable shaping techniques (cell size 3 x 3 cm2); namely, the Ni / BIT07 anodes were elaborated by tape casting, the BIT07 electrolyte by vacuum slip casting and the cathodes by screen printing. Comparison of electrochemical results for a first and second generation of cells highlighted the usefulness of adding a GDC buffer layer in between the LnN cathodes and the BIT07 electrolyte. The best performance has been obtained for a cell BIT07 / Ni | BIT07 | GDC | PrN, with a power density at 700C and 0.7 V of 176 mW cm-2 for a competitive polarisation resistance of 0.29 cm2. The main limitation of the performance has been determined to be related to the internal resistance of the test setup, giving anomalously high series resistances. This cell has been successfully operated beyond 500 hours under current, although with a fairly high extrapolated degradation rate of 27% / kh.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.

    Get PDF
    Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent.We acknowledge funding from the European Commission through the Graphene Flagship, the FET project UPGRADE (GA-309056), the Agence Nationale de la Recherche through the LabEx project Nanostructures in Interaction with their Environment (ANR-11-LABX-0058_NIE), the International Center for Frontier Research in Chemistry (icFRC), the Belgian National Fund for Scientific Research (FNRS-FRFC), the ERC synergy grant Hetero2D, ERC PoC HiGRAPHINK, and the Engineering and Physical Sciences Research Council grants EP/K01711X/1, EP/K017144/1, and EP/L016087/1.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.jpclett.6b0126

    A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells

    Get PDF
    Thrombospondin-1 (TSP-1) gives rise to fragments that have both pro- and anti-angiogenic effects in vitro and in vivo. the TSP-HepI peptide (2.3 kDa), located in the N-terminal domain of TSP-1, has proangiogenic effects on endothelial cells. We have previously shown that TSP-1 itself exhibits a dual effect on endothelial colony-forming cells (ECFC) by enhancing their adhesion through its TSP-HepI fragment while reducing their proliferation and differentiation into vascular tubes (tubulogenesis) in vitro. This effect is likely mediated through CD47 binding to the TSP-1 C-terminal domain. Here we investigated the effect of TSP-HepI peptide on the angiogenic properties of ECFC in vitro and in vivo. TSP-HepI peptide potentiated FGF-2-induced neovascularisation by enhancing ECFC chemotaxis and tubulogenesis in a Matrigel plug assay. ECFC exposure to 20 mu g/mL of TSP-HepI peptide for 18 h enhanced cell migration (p < 0.001 versus VEGF exposure), upregulated alpha 6-integrin expression, and enhanced their cell adhesion to activated endothelium under physiological shear stress conditions at levels comparable to those of SDF-1 alpha. the adhesion enhancement appeared to be mediated by the heparan sulfate proteoglycan (HSPG) syndecan-4, as ECFC adhesion was significantly reduced by a syndecan-4-neutralising antibody. ECFC migration and tubulogenesis were stimulated neither by a TSP-HepI peptide with a modified heparin-binding site (S/TSP-HepI) nor when the glycosaminoglycans (GAGS) moieties were removed from the ECFC surface by enzymatic treatment. Ex vivo TSP-HepI priming could potentially serve to enhance the effectiveness of therapeutic neovascularisation with ECFC. (C) 2012 Elsevier Inc. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Groupe d'Etude et de Recherches sur l'Hemostase (GEHT)Region Ile-de-France (CORDDIM)Leducq TransAtlantic Network of ExcellenceUniv Estado Rio de Janeiro, Dept Biol Celular, Lab Biol Celula Endotelial & Angiogenese LabAngio, Inst Biol Roberto Alcantara Gomes, BR-20550011 Rio de Janeiro, RJ, BrazilINSERM, U765, Paris, FranceUniv Paris 05, Paris, FranceUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biofis, São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Ciencias Biomed, Rio de Janeiro, RJ, BrazilHop Europeen Georges Pompidou, AP HP, Dept Haematol, Paris, FranceINSERM, Paris Cardiovasc Res Ctr, U970, Paris, FranceUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biofis, São Paulo, BrazilLeducq TransAtlantic Network of Excellence: 04CVD01-LENALeducq TransAtlantic Network of Excellence: 04CVD02 -LINATCNPq: E-26/110.780/2010CAPES: 629/09Web of Scienc

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore